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Abstract

The Human Microbiome Project (HMP) is sequencing genomes collected from various human body sites.
The sequencing is being done using Illumina and 454 next-generation sequencing platforms that generate
short reads in large volumes. As the sequences submitted contain reads for the human from whom
the sample was collected, it is ethically necessary to provide the full set of sequences under controlled
access portion of the Sequence Read Archive (SRA), and to provide only the sequences that have been
screened for human “contamination” publicly. Best Match Tagger (BMTagger) is an efficient tool that
discriminates between human reads and microbial reads without doing an alignment of all reads to the
human genome.

In the sets we analyzed, BMTagger has less than 2% of the human reads classified as foreign and
negligible (less than 0.01%) microbial reads classified as human. Aligning all reads to the human genome
build 37 using BWA short read aligner shows that speed of BMTagger is comparable to that of BWA
and that BWA does not report alignments for a large number of human reads even when there are only
a few errors in the reads. The speed of BMTagger is partially explained by the observation that for
most sets, only a small percentage of the reads need a determination by alignment. In our experiments
with metagenomic datasets, the throughput of BMTagger ranges between 10 to 45 million paired 100 bp
Illumina reads per hour on a single processor, and it is even better for 454 as longer reads are easier to
discriminate. Using BMTagger facilitated a minimal delay between when the reads are submitted and
when the screened subset becomes publicly available.

BMTagger is available at
ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/bmtagger

Introduction

The Human Microbiome Project (HMP) is a NIH Roadmap initiative (http://nihroadmap.nih.gov/hmp/)
that is part of a larger international effort for studying microbial communities harvested from natural
environments found in various human body sites. The sequencing for the project is being done using
Illumina and 454 that are both next-generation sequencing technologies producing gigabases of data per
day [1]. As of June 16, 2011, searching SRA at NCBI for ”Human Microbiome Project” using Entrez
gave 3424 experiments of which 3421 had at least one run. Of these 3421 experiments (see details in
supplemental table S1), 2291 were sequenced using 454 (16708 runs, 153.8 Gb sequence) and 1130 were
sequenced using Illumina (1607 runs, 8270.9 Gb sequence). The sequences generated are “contaminated”
by reads that are for the human from whom the sample was collected. A major concern for making the
data publicly available is that the human contamination may be sufficient to identify the human subjects.
The current policy is to submit all reads to the controlled-access dbGaP Sequence Read Archive (SRA) so
that only authorized users can access the full set. For any reads that are determined as human, all their
bases are replaced by ambiguity character ‘N’ in the shadow copy of the submission available publicly in
the openly available SRA.

To determine whether a read is human or not, one can align it to the human genome using MegaBlast
[2], or one of the various short-read aligners published in the past couple of years. See [5] for a recent



2

survey of published short-read aligners. Determining contamination by alignment is not necessarily the
most efficient use of computing resources because we are not interested in finding where and how a
read aligns to the human genome, but only in whether it aligns or not. Furthermore, we still need to
make a determination for whether a particular alignment is “good enough” and “long enough”, and also
overcome the issue of missing alignments due to the heuristics used by the short-read aligner. Alignment-
free methods for doing sequence comparisons typically use oligomer frequencies or information content
(see [7] for a review). To our knowledge, none of the alignment-free methods are appropriate when the
two sequences being compared had lengths that differed in orders of magnitude, such as a short read and
the human genome in our case. It was also not clear how the published methods would behave when the
reads have sequencing errors in them.

We present BMTagger that attempts to first use a heuristic to discriminate between human reads
and microbial reads by comparing the 18mers found in the read with those in the human genome. If it
fails to make a determination, then it uses an alignment procedure called srprism that guarantees to find
matches with upto two errors in reads that are at least 32 bp long, if such an alignment exists. For reads
of length L longer than 32 bp, srprism guarantees to find matches with upto ⌊(L/16)⌋ − 1 errors. We
find that our heuristic is as fast as BWA [3] and much more sensitive than BWA. DeconSeq [4] method
published recently modified BWA to make it more sensitive, but is targeting reads lengths longer than
the ones produced by Illumina at this time.

The reads can be presented to the tagger as fasta or fastq files, or it can also retrieve reads directly
from SRA. SRA design is to divide information for reads into columns, with one column per attribute
such as nucleotide sequence and quality. This design leads to easy extensions as the one desired for
recording screening status of each read to facilitate appropriate actions when making a public copy.

Materials and Methods

BMTagger screening

BMTagger considers each read individually and decides whether the read can be tagged as human or
microbial, or whether the read should be aligned to the human genome in order to make the decision.
The determination without alignment is done by bmfilter that uses a heuristic for how many and how
many consecutive 18mers in the read are also present in the human genome. For reads that are not
decided by bmfilter, the alignment to the human genome is carried out by srprism. The bmtagger.sh shell
script controls communication between different steps and combines results from each step to produce
the final set of results.

Both bmfilter and srprism require indexes on the human genome to be pre-computed once. Index for
bmfilter is computed by bmtool that generates a bitmap storing information about 18mers present in the
human genome. Index for srprism is generated by srprism command with argument mkindex.

We next give some more details for BMTagger, bmfilter, and the datasets used for evaluation.

BMTagger algorithm: Steps carried out by BMTagger are as follows:

1. Generate a random string that will be used to name temporary files created in the rest of the
process.

2. Generate bmfilter command using the input parameters specified. User can specify reads as fasta
or fastq files, or specify the SRA run accession as the source of reads. For SRA run accessions, the
process uses SRA toolkit [6] to access the reads.

3. Using bmfilter, classify reads as foreign or human, and for reads that cannot be classified, generate
subsequences of length 32 bp with a distance of 4 bases between the previous and the next, except
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the last one if sequence length is not a multiple of 4. Reads shorter than 32 bases are reproduced.
Low-complexity subsequences are not generated.

4. Run srprism on subsequences for the first mate looking for an alignment with at most one error. If
the reads are paired, then remove subsequences (using extract fullseq) for the second mate for reads
found as human with first mate and run srprism on the rest.

5. Combine outputs from bmfilter and srprism, and remove temporary files.

bmfilter process: Parameters to bmfilter control trimming of reads when ambiguity characters are
present. By default, trimming stops when there are no ambiguity characters in the first and last 5 bases.
A read (or mate) is considered further by bmfilter only if its length after trimming is above a specified
length (default of 25 bp). Then, for a sequence of length N , a bitvector of size (N − 17) is generated
where the bit at position i is 1 if and only if the 18mer starting at position i is present in the human
genome. A similar bitvector is generated for the reverse complement of the sequence. If the number of
1s is less than 20% and the longest run of 1s is less than 10%, then the bitvector is called foreign, if
the number of 1s is at least 80% and the longest run of 1s is at least 40%, then the bitvector is called
human, else a determination for the bitvector cannot be made. If a determination is made as human for
a bitvector, then the read is tagged human regardless of the determination for other bitvectors for the
same read. For a read to be tagged foreign, all bitvectors for the read must be called foreign. Note that
for paired reads, we can have upto four bitvectors to consider.

Bitvector compression

The 18mer bitvector indicating presence or absence of an 18mer in the human genome contig produces a
sparse vector and also put a minimum og 8 Gb memory requirement on the process. We have implemented
a couple of compression schemes to reduce the size of the bitvector.

Bitmask takes large space both in file and in memory. For word size of 18 which is found to be practical
for Human contamination screening the size is 8 Gigabytes. Therefore a compressed representation of
the bitmap was developed as an option. For Human genome build 37 compressed bitmask takes less or
about 2.7 Gigabytes in file and same memory is used at screening time. Producing bitmask takes only
about 15 min for both contiguous and discontiguous patterns, and takes shorter time for smaller Nmers.

Compressed representation besides header consists of two data parts: fixed size table and sequence of
arbitrary size data blocks.

For compression, each word (which in flat bitmask addresses bit with value of 1) is split in prefix
and suffix of the predefined sizes. For the Human genome using word size of 18 bases (36 bits) and no
ambiguities allowed best compression is achieved with 26 bit prefixes (and 10 bit suffixes).

Prefix is used as an address in the fixed size table. The table contains two columns: number of words
sharing this prefix and the address of the data block in the second part of the bitmask. To save space,
sizes of these columns can be set in bits and for the discussed case 10 and 34 bits appripriately should
be used to achieve best results. Then size of the table is 226 ∗ 44 bits or approximately 360 Megabytes.
Smaller values may end up with everflow error, larger will unnecessarily increase primary table size.

Number of words sharing same prefix is used to determine size of the secondary block. For some
prefixes number of suffixes available for the genome may be very short, and in this case list of suffixes
may take just few bytes. Extreme case is empty list which takes no space. For other prefixes list of
suffixes may take more space then bitmap; in this case data block contains bitmap. Since suffix size is
predefined, so is the maximal number of suffixes when list takes less space then bitmap. In the discussed
case list of 102(210/10) 10-bit suffixes takes as much space (in bytes) as bitmask addressed with 10 bits
(1 kB), so whenever we have shorter list we win in space compared to a bitmap block.
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In these terms flat bitmask representation is a special case of the compressed ones with suffix length
of 0, word count length of 1 and data offset length of 0.

To check if a word is present in the reference genome following algorithm is used: 1st, prefix is
computed; 2nd, table entry (count, offset) is retrieved; 3rd - if length of the list is 0, then algorithm
finishes knowing that the word is absent; else 4th - for very short list it is consecutively scanned till
match of the list item to the suffix of the query word or to the end; for longer lists binary search is used;
or if the value of number of suffixes in the table is so large that the datablock contains bitmask - the bit
value which corresponds to the suffix value is checked.

Somewhat higher level of compression may be achieved if it is taken into account that some prefixes
may share same list of suffixes. In this case same data block can be addressed by two or more table
entries. Detecting such cases noticeably increases CPU time while compressing bitmask.

0.1 Evaluation datasets

0.2 Evaluation method

run bmtagger
bwa command line
48 mer with at most 2 errors

Results

Choice of Nmer and pattern for heuristic

Accuracy assessment

The number of foreign and human reads in the benchmark sets is given in Table 1. Results on the
benchmark sets and five SRA accessions are presented in Tables 2 and 1. Our experiments show that
discriminating between human and microbial reads can be done efficiently without resorting to time-
consuming alignment of all reads to the human genome, as shown by the classification done by bmfilter

in Table 2 and low error rate (defined as number of reads tagged incorrectly as compared to the total
number of reads) shown in Table 1.

The human set has 3928 reads (1977 on forward and 1951 on reverse strand) where only the read or
its reverse complement is tagged as human and the other one is not. This inconsistency is because, with
the stride of 4 and length not a multiple of 4, the 32mers generated for alignment by srprism are different
for the read and its reverse complement.

NOTE: RICHA ADD RESULTS FOR ADDITIONAL SIMULATED SETS
First compression scheme reduces the memory footprint of the process from the current 8.1 Gb to 2.6

Gb. This scheme reduces running time for runs when the running time is dominated by the time taken
for loading the index for bmfilter (such as for SRR040576), but typically takes 50% longer for runs in
Table 2.

Running time

compressed better for really small sets
We did not investigate DeconSeq extensively, but submitting SRR14.. gave us the message that “The

running step will take about 10 minutes for each 100 MB of submitted data independent of the number
of databases selected (assuming the cluster has enough free resources at the time of computation).”
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Discussion

HMP project has several centers producing sequences. A consistent treatment of all sequences for con-
tamination screening provides opportunities to both improve screening method, and also adequaltely
compensate for any shortcomings in the screening method. As sequences are submittted to controlled
SRA, it was natural for NCBI to undertake development of a method for screening the human reads and
to provide microbial reads openly to the public. The pipeline for doing these tasks utilizing BMTagger
has been in production at NCBI since July 2010.

NOTE: RICHA ADD TEXT AND RESULTS FOR DISCONTIGUOUS PATTERNS AND SHORTER
KMERS

We find that most of the reads tagged incorrectly are low-complexity reads. We plan to investigate the
effect of using the human genome that is masked for low-complexity. We are also working on incorporating
improvements in srprism that for reads of length L where L > 32bp, now guarantees to find alignments
with up to ⌊(L/16)⌋ − 1 errors.
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Figure Legends

Tables

Table 1. BMTagger error rate

Dataset Foreign Human F as H H as F Error
metagenomic 508149 50815 0 448 0.080
confirmed 40000000 0 6873 na 0.017
simulated 40000000 0 12785 na 0.031
q2trimmed 39991384 4000000 4006 64935 0.157
human 0 10000000 na 203030 2.030

Number of foreign and human reads in benchmark sets and the number of reads incorrectly classified.
Columns labeled ”F as H” and ”H as F” given the number of foreign reads classified as human and the
number of human reads classified as foreign, respectively.

Table 2. bmfilter classification

Classification by bmfilter

Dataset Foreign Human Unknown Running time (min)
SRR006003 12670 1281162 342827 24 (9)
SRR046896 11258 2 42 0.7 (0.3)
SRR051944 998981 52164 97182 7 (6.4)
SRR059818 38183094 98188 11616610 185 (114)
SRR059480 23364262 5978338 6378194 108 (64)
metagenomic 508269 44969 5726 3.5 (2.2)
q2trimmed 34880460 3381760 5729164 65 (47)
confirmed 34838129 3865 5158006 54 (44)
simulated 36025143 8330 3966527 65 (44)
human 149990 7008934 2841076 32 (9)

Number of reads classified as foreign or human, and the number of reads that cannot be classified by
bmfilter is shown. Total time taken by BMTagger, with the time taken by bmfilter in brackets is also
shown.


